Dyspnea and Disease Are Progressing
Workshop Description

• Facilitated interactive case discussion; faculty need to manage time so that all cases are reviewed/discussed
• Four different cases (IPF, PAH, asthma, COPD)
• Each case has a series of questions that will serve as a guide to the discussion.
• Slides are included within each section that may be useful to support discussion
Meet Jane: 63-year-old Female

• Lives in Kona, Hawaii
 – Provides educational talks about sea turtles for visitors at the beach in Kaloko-Honokohau National Park
• No PMH, former smoker
• No symptoms of SOB or cough
• Incidental ILD found on routine CXR
Jane’s HRCT: UIP
Jane’s Pulmonary Function Tests

- TLC = 3.61 (94% of predicted)
- FVC = 1.75 (76% of predicted)
- FEV1 = 1.45 (85% of predicted)
- FEV1/FVC = 83%
- DLCO = 14.31 (73% of predicted)
- DL/VA = 4.74 (100% of predicted)
Questions

• Is Jane a candidate for antifibrotic therapy?
 — If yes, which agent would you recommend for Jane?

• What should you include in your discussion regarding the risks and benefits of starting treatment?

• If she starts treatment, what can be expected if a dose adjustment is necessary to manage treatment-related side effects?
Jane: Six Months on Antifibrotic Therapy

• Six months after initiation of nintedanib, Jane presented to the clinic with complaint of increased DOE, now SOB after one block and one flight of stairs (was asymptomatic at baseline)

• PFTS obtained
 – Baseline: FVC 85%, FEV\textsubscript{1} 90%, DLCO 67%
 – Six months: FVC 72%, FEV\textsubscript{1} 80%, DLCO 51%
What Are Reasonable Management Options for Jane Now?

- Evaluate treatment adherence
- Stop nintedanib: It’s not working
- Continue nintedanib: Disease progression does not = drug failure
- Add pirfenidone
- Switch to pirfenidone
- Refer for pulmonary rehabilitation
- Refer for lung transplant evaluation
- Hospice consultation
Factors Influencing Treatment Decisions

- Lifestyle
- Comorbidities
- Potential treatment-related side effects
- Patient preferences
- Realistic treatment expectations

Nintedanib (Ofev)

Pirfenidone (Esbriet)
Approved Antifibrotic Therapies for Patients with IPF

Pirfenidone
- FDA approval 2014
- Antifibrotic properties; exact mechanism of action unknown
- Orally administered, 801 mg, three times daily
- Nausea, **RASH/SUN SENSITIVITY**, dyspepsia/GERD

Nintedanib
- FDA approval 2014
- Tyrosine kinase inhibitor; targets FGFR, PDGFR, VEGFR, FLT3
- Orally administered, 150 mg, two times daily
- Diarrhea, nausea

Think about Jane’s lifestyle ...

Pirfenidone. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022535s005lbl.pdf
Nintedanib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205832s004lbl.pdf
Recommendations for Optimizing Treatment Adherence in Patients with IPF

• Establish clear treatment expectations
 – Drugs are unlikely to improve symptoms
 – Partner with patient to manage any side effects
 – Unable to distinguish if drug “is working”
• Discuss the importance of treatment adherence
• Monitor and manage treatment-related side effects
• Implement dose reduction protocols, as appropriate
• Consider treatment switch for intolerable side effects despite dose adjustments and other symptom management strategies
The Course of IPF Is Variable

Survival (%)

Asymptomatic period (months to years)

Lung microinjuries

Onset of symptoms

Acute exacerbations

Rapid progressive course

Slow progressive course

www.PILOTforPulmonary.org
Does Disease Severity Matter?

Jane’s baseline FVC = 85%

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Subgroup</th>
<th>Standardized treatment effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>FVC <80% FVC ≥80%</td>
<td>▼</td>
<td>0.3969</td>
</tr>
<tr>
<td></td>
<td>GAP II–III GAP I</td>
<td>▼</td>
<td>0.8152</td>
</tr>
<tr>
<td>6MWD</td>
<td>FVC <80% FVC ≥80%</td>
<td>▼</td>
<td>0.9583</td>
</tr>
<tr>
<td></td>
<td>GAP II–III GAP I</td>
<td>▼</td>
<td>0.9327</td>
</tr>
<tr>
<td>UCSD SOBQ</td>
<td>FVC <80% FVC ≥80%</td>
<td>▼</td>
<td>0.1957</td>
</tr>
<tr>
<td></td>
<td>GAP II–III GAP I</td>
<td>▼</td>
<td>0.0804</td>
</tr>
</tbody>
</table>

Pirfenidone was associated with decreases in the proportion of patients experiencing categorical declines in the three outcomes, with no significant differences between mild and moderate disease.

6-MWD, 6-minute walk distance; UCSD SOBQ, University of California San Diego Shortness of Breath Questionnaire

Consistent Effect of Nintedanib Across Patient Subgroups

Jane’s baseline FVC = 85%

Nintedanib in Patients with Preserved Lung Function

FVC > 90% predicted
n = 166 n= 108

FVC ≤ 90% predicted
n= 472 n= 315

Nintedanib Treatment - by - time - by - subgroup interaction
P = 0.5300

Δ133.1 mL (95% Cl: 68.0, 198.2) -224.6

Δ102.1 mL (95% Cl: 61.9, 142.3) -223.6

Adjusted annual rate (SE) of decline in FVC (ml/year)

Delta 133.1 mL
Nintedanib
Placebo

Annual Rate of Decline in FVC by Nintedanib Dose Adjustment/Intensity

<table>
<thead>
<tr>
<th>Dose received</th>
<th>Dose adjustments</th>
<th>Dose intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>150 mg bid</td>
<td>No dose reduction or treatment interruption</td>
</tr>
<tr>
<td>n=734</td>
<td>(n=418)</td>
<td>(n=357)</td>
</tr>
<tr>
<td>100 mg bid</td>
<td>150 mg bid and 100 mg bid</td>
<td>≤90% (n=261)</td>
</tr>
<tr>
<td>(n=52)</td>
<td>(n=264)</td>
<td>>90% (n=475)</td>
</tr>
<tr>
<td>-135.1</td>
<td>≥1 dose reduction and treatment interruption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=168)</td>
<td></td>
</tr>
<tr>
<td>-133.9</td>
<td>≥1 dose reduction only (n=95)</td>
<td></td>
</tr>
<tr>
<td>-94.8</td>
<td>≥1 treatment interruption only (n=114)</td>
<td></td>
</tr>
<tr>
<td>-145.0</td>
<td>-125.0</td>
<td></td>
</tr>
<tr>
<td>-144.8</td>
<td>-133.1</td>
<td></td>
</tr>
<tr>
<td>-142.1</td>
<td>-139.3</td>
<td></td>
</tr>
<tr>
<td>-132.6</td>
<td>-132.6</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring for Disease Progression

• Consider every three months:
 – PFTs (at least FVC and DLCO)
 – 6MWT (distance/nadir saturation)
 – O₂ requirement during activity
 – Comorbidities
 – Use of dyspnea and cough questionnaires
 • (UCSD, SGRQ, CQLQ, LCQ)
 – Assessment of overnight pulse oximetry to assess for nocturnal desaturation

• Repeat imaging:
 – Consider HRCT upon suspicion of clinical worsening
 – Consider CT angiogram if any suspicion for PE
At Each Visit

• Ask yourself and your patient:
 – Are we still comfortable with what we’re doing?
 – Assess quality of life, challenges
 – Side effects of medications
 – Should we change anything?
 – Are there data to support doing anything differently?

• Determine whether your patient is progressing
 – If unsure, bring him/her back in six weeks and obtain another data point
Pirfenidone Effect in the Subsequent Six-Month Period After FVC Decline ≥ 10%

<table>
<thead>
<tr>
<th></th>
<th>Pirfenidone (N=34)</th>
<th>Placebo (N=68)</th>
<th>Δ</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 10% decline in FVC or death</td>
<td>2 (5.9%)</td>
<td>19 (28%)</td>
<td>−79%</td>
<td>0.009</td>
</tr>
<tr>
<td>No further decline in FVC</td>
<td>20 (59%)</td>
<td>26 (38%)</td>
<td>+54%</td>
<td>0.059</td>
</tr>
<tr>
<td>Death</td>
<td>1 (2.9%)</td>
<td>14 (21%)</td>
<td>−86%</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Nintedanib Effect After FVC Decline ≥ 10% in the First Six Months

<table>
<thead>
<tr>
<th>Event in First Six Months</th>
<th>Outcome in Subsequent Six Months</th>
<th>Nintedanib (n = 46)</th>
<th>Placebo (n = 53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute percent predicted FVC decline of ≥10%</td>
<td>Further absolute FVC decline ≥10%</td>
<td>19.6%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>10.9%</td>
<td>13.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event in First Six Months</th>
<th>Outcome in Subsequent Six Months</th>
<th>Nintedanib (n = 87)</th>
<th>Placebo (n = 89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative % predicted FVC decline of ≥10%</td>
<td>Further relative FVC decline ≥10%</td>
<td>31.0%</td>
<td>24.7%</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>10.3%</td>
<td>14.6%</td>
</tr>
</tbody>
</table>

Meet Sandra: 52-Year-Old Female

- Was diagnosed with PAH one year ago and has recently relocated
- She is in clinic today as a new patient
- Review of her medical records indicate that she was diagnosed as **WHO FC I**, she had a negative acute vasoreactivity test and no PH-treatment was initiated
Sandra: Risk Assessment

- Sandra is usually comfortable at rest, but since she has moved and is settling into her new home she is having difficulty with normal activities, not to mention the added effort associated with unpacking. She is frequently out of breath, quite fatigued and almost fainted a few times.

- No signs of right heart failure
- 6MWD 200 meters
- BNP: 250 ng/L; NT-proBNP: 600 ng/L
- Hemodynamics
 - RAP: 12 mm Hg
 - PA 69/30 (mPAP=43 mmHg)
 - Wedge pressure = 8 mmHg
 - CI: 2.2 l/min/m²
Questions

• What is Sandra’s WHO functional class?
• Has there been a change since her PAH diagnosis?
• What is your recommended treatment approach and why?
 — Pharmacotherapy?
 — Non-pharmacologic interventions, supportive care?
• How will you monitor Sandra?
6th World Symposium on Pulmonary Hypertension: Treatment Algorithm FOR PAH

Treatment-naive patient

- PAH confirmed by expert centre
 - General measures
 - Supportive therapy

Vasoreactive

- Acute vasoreactivity test (IPAH/HPAH/DPAH only)
 - CCB therapy

Non-vasoreactive

- Low or intermediate risk
 - Residual role for initial monotherapy (Table 2)

- High risk
 - Initial combination including i.v. PCA

Patient already on treatment

- After 3–6 months of treatment
 - Intermediate or high risk
 - Structured follow-ups

- Low risk
 - Maximal medical therapy and listing for lung transplantation

- Intermediate or high risk
 - After 3–6 months of treatment

Upon Confirmation of PAH

- Evaluate severity in a systematic and consistent manner.
- Coordinate care between local physicians and PH centers.
- Treat contributing causes of PH aggressively.
- Incorporate palliative care services in the management of PAH patients.
- Participate in supervised exercise activity as part of the integrated care of their disease.
- Maintain current immunization against influenza and pneumococcal pneumonia.
- Avoid pregnancy. When pregnancy does occur, we suggest care be provided at a pulmonary hypertension center.
- Avoid exposure to high altitude. When exposure to high altitude or air travel occurs, use supplemental oxygen as needed to maintain oxygen saturations > 91%.
- Avoid non-essential surgery. When surgery is necessary, we suggest care at a pulmonary hypertension center.
Evaluate Disease Severity to Inform Treatment Decisions

- Evaluate severity in a systematic and consistent manner
 - WHO FC
 - Exercise capacity
 - Echocardiographic, laboratory and hemodynamic variables

WHO Functional Class

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I:</td>
<td>Patients with PH but without resulting limitation of physical activity. Ordinary physical activity does not cause undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class II:</td>
<td>Patients with PH resulting in slight limitation of physical activity. They are comfortable at rest. Ordinary physical activity causes undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class III:</td>
<td>Patients with PH resulting in marked limitation of physical activity. They are comfortable at rest. Less than ordinary activity causes undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class IV:</td>
<td>Patients with PH with inability to carry out any physical activity without symptoms. These patients manifest signs of right-sided heart failure. Dyspnea and/or fatigue may even be present at rest. Discomfort is increased by any physical activity.</td>
</tr>
</tbody>
</table>

Currently Approved Medications for PAH

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Route of Administration</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostacyclin derivatives</td>
<td>Epoprostenol*</td>
<td>IV infusion</td>
<td>2 ng/kg/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase as tolerated</td>
</tr>
<tr>
<td>Iloprost</td>
<td>Inhaled</td>
<td></td>
<td>2.5 or 5.0 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-9 inhalations/d</td>
</tr>
<tr>
<td>Treprostinil</td>
<td>Oral</td>
<td></td>
<td>0.25 mg bid or 0.125 mg tid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase 0.125 mg bid every 3-4 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18-54 mg (3-9 inhalations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subcutaneous or IV infusion</td>
<td>1.25 ng/kg/min; increase 1.25 ng/kg/min per week based on clinical response</td>
</tr>
<tr>
<td>Endothelin receptor antagonists</td>
<td>Bosentan</td>
<td>Oral</td>
<td>125 mg twice daily</td>
</tr>
<tr>
<td></td>
<td>Ambrisentan</td>
<td>Oral</td>
<td>5 or 10 mg once daily</td>
</tr>
<tr>
<td></td>
<td>Macitentan</td>
<td>Oral</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Phosphodiesterase type-5 inhibitors</td>
<td>Sildenafil</td>
<td>Oral</td>
<td>20 mg every 8 h</td>
</tr>
<tr>
<td></td>
<td>Tadalafil</td>
<td>IV injection</td>
<td>40 mg once daily</td>
</tr>
<tr>
<td>Soluble guanylate cyclase stimulator</td>
<td>Riociguat</td>
<td>Oral</td>
<td>0.5-1.0 mg every 8 h (increase 0.5 mg every 2 wk as tolerated to maximum dose 2.5 mg)</td>
</tr>
<tr>
<td>Prostacyclin receptor agonists</td>
<td>Selexipag</td>
<td>Oral</td>
<td>200 mg twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase as tolerated to maximum dose of 1600 mg twice daily</td>
</tr>
</tbody>
</table>
Treatment Goals

• Achieving low-risk status, which is:
 – Good exercise capacity
 – Good quality of life
 – Good RV function
 – Low mortality risk

Goal: WHO-FC II whenever possible, with normal/near-normal 6MWD
Treatment Naïve Patients: WHO FC II and III

Initial combination therapy with ambrisentan and tadalafil to improve 6MWD

Negative acute vasoreactivity test

- Treatment naïve PAH patients with WHO FC II
 - Is the patient willing or able to tolerate combination therapy?
 - Yes: Combination therapy with ambrisentan and tadalafil
 - No: Monotherapy with either bosentan, macitentan, ambrisentan, riociguat, sildenafil or tadalafil

- Treatment naïve PAH patients with WHO FC II without evidence of rapid disease progression or poor prognosis
 - Is the patient willing or able to tolerate combination therapy?
 - Yes: Combination therapy with ambrisentan and tadalafil
 - No: Monotherapy with either bosentan, macitentan, ambrisentan, riociguat, sildenafil or tadalafil
Meet Charles: 48-year-old male

- History of wheezing after colds as a child
- At age 40, caught a “bad cold” and developed a respiratory infection lasting several weeks
- Since then, has had infections associated with wheezing four-six times per year
- At age 44, began to have chronic postnasal drip, persistent coughing and wheezing despite treatment
 - Mometasone/formoterol MDI 200 mcg/5 mcg, two puffs BID
 - Montelukast 10 mg QHS
 - Tiotropium 1.25 mcg, two puffs QD
 - Fluticasone propionate nasal spray, one spray per nostril BID
- Currently uses his rescue albuterol inhaler three-four times/day
- Awakens with nonproductive cough and wheezing ~three nights/wk
- Two 10-d courses of prednisone in the past six months for severe dyspnea, cough, wheezing, chest tightness
Charles (con’t)

• Review of systems: can’t smell or taste his food
• Past medical history: hypertension, hyperlipidemia, gout
• Drug allergies: severe dyspnea and chest tightness after taking an effervescent antacid/pain relief medication
• Medications: above medications + amlodipine, simvastatin, allopurinol
• Environmental history: He lives in a newer home in the Los Angeles area with three pet dogs
• Family history: father with seasonal hay fever
• Social history: He smoked one pack of cigarettes per day from age 16 to 38 years
Charles: Physical Exam

• Thin, looks older than his stated age, in no acute distress
• HEENT: bilateral inferior turbinate swelling with right-sided blue-grey, grape-like mass
• Lungs: bilateral mild expiratory wheezing, diffuse with occasional rhonchi
• Heart: normal heart sounds, no murmur
• Extremities: trace pedal edema, no cyanosis or clubbing
Charles: Lung Function and Lab Tests

- CBC: normal WBC, hemoglobin; eosinophils (from differential) = 778/mcl
- Specific IgE assay: positive to elm tree and ragweed pollen, *Aspergillus fumigatus* (mold)
- Total IgE = 183 IU/ml

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-bronchodilator Absolute (L) & %predicted</th>
<th>Post-bronchodilator Absolute (L) & %predicted</th>
<th>Post-bronchodilator % change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>3.08 (72%)</td>
<td>3.14 (73%)</td>
<td>+2%</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.88 (53%)</td>
<td>2.11 (59%)</td>
<td>+12%</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.61</td>
<td>0.67</td>
<td>NA</td>
</tr>
<tr>
<td>FEF 25-75%</td>
<td>28%</td>
<td>35%</td>
<td>+25%</td>
</tr>
</tbody>
</table>
Charles: Questions

1. What is your preliminary diagnosis?
2. Highlight key aspects of his history and physical that can help inform your treatment decisions and recommendations.
3. What additional history would be helpful?
4. What is the significance of his “bad cold” at age 40?
5. What additional testing would you do?
6. What is Charles’ asthma phenotype?
7. What therapeutic changes would you make?
 - What would be your initial plan and for how long?
 - What would be your follow-up plan? [develop an asthma action plan]
ASTHMA CONTROL TEST™

Know your score.

The Asthma Control Test™ provides a numerical score to help you and your healthcare provider determine if your asthma symptoms are well controlled.

Take this test if you are 12 years or older. Share the score with your healthcare provider.

Step 1: Write the number of each answer in the score box provided.

Step 2: Add up each score box for the total.

Step 3: Take the completed test to your healthcare provider to talk about your score.

IF YOUR SCORE IS 19 OR LESS, Your asthma symptoms may not be as well controlled as they could be. No matter what the score, bring this test to your healthcare provider to talk about the results.

NOTE: If your score is 15 or less, your asthma may be very poorly controlled. Please contact your healthcare provider right away. There may be more you and your healthcare provider can do to help control your asthma symptoms.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In the past 4 weeks, how much of the time did your asthma keep you from getting as much done at work, school or at home?</td>
<td></td>
</tr>
<tr>
<td>All of the time [1]</td>
<td></td>
</tr>
<tr>
<td>Most of the time [2]</td>
<td></td>
</tr>
<tr>
<td>Some of the time [3]</td>
<td></td>
</tr>
<tr>
<td>None of the time [4]</td>
<td>3</td>
</tr>
<tr>
<td>2. During the past 4 weeks, how often have you had shortness of breath?</td>
<td></td>
</tr>
<tr>
<td>More than Once a day [1]</td>
<td></td>
</tr>
<tr>
<td>Once a day [2]</td>
<td></td>
</tr>
<tr>
<td>3 to 6 times a week [3]</td>
<td>3</td>
</tr>
<tr>
<td>4 or more 2 to 3 nights a week [2]</td>
<td></td>
</tr>
<tr>
<td>3. During the past 4 weeks, how often did your asthma symptoms (wheezing, coughing, shortness of breath, chest tightness, or other symptoms) wake you up at night or earlier than usual in the morning?</td>
<td></td>
</tr>
<tr>
<td>4 or more 2 to 3 nights a week [2]</td>
<td></td>
</tr>
<tr>
<td>2 to 3 nights a week [3]</td>
<td></td>
</tr>
<tr>
<td>Once or twice a week [4]</td>
<td></td>
</tr>
<tr>
<td>Not at all [5]</td>
<td>2</td>
</tr>
<tr>
<td>4. During the past 4 weeks, how often have you used your rescue inhaler or nebulizer medication (such as albuterol)?</td>
<td></td>
</tr>
<tr>
<td>3 or more 1 to 2 times per day [1]</td>
<td></td>
</tr>
<tr>
<td>2 or 3 times per day [2]</td>
<td></td>
</tr>
<tr>
<td>Once or twice a week [3]</td>
<td></td>
</tr>
<tr>
<td>Not at all [5]</td>
<td>1</td>
</tr>
<tr>
<td>5. How would you rate your asthma control during the past 4 weeks?</td>
<td></td>
</tr>
<tr>
<td>Not Controlled at All [1]</td>
<td></td>
</tr>
<tr>
<td>Poorly Controlled [2]</td>
<td></td>
</tr>
<tr>
<td>Somewhat Controlled [3]</td>
<td></td>
</tr>
<tr>
<td>Well Controlled [4]</td>
<td></td>
</tr>
<tr>
<td>Completely Controlled [5]</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL: 11

Copyright 2003, by QualityMetric Incorporated.

Asthma Control Test is a trademark of QualityMetric Incorporated.
Asthma Action Plan

Name: ________________________ DOB: _/__/_____

Severity Classification: □ Intermittent □ Mild Persistent □ Moderate Persistent □ Severe Persistent

Asthma Triggers: (list) ___

Peak Flow Meter Personal Best: ______

Green Zone: Doing Well

Symptoms: Breathing is good - No cough or wheeze - Can work and play - Sleeps well at night

Peak Flow Meter: ______ (more than 80% of personal best)

Control Medication(s): Medicine: __________________________ How much to take: __________________________ When and how often to take it: __________________________

Physical Activity: □ Use albuterol/levalbuterol ______ puffs, 15 minutes before activity □ With all activity □ When you feel you need it

Yellow Zone: Caution

Symptoms: Some problems breathing - Cough, wheeze, or chest tight - Problems working or playing - Wake at night

Peak Flow Meter: ______ to ______ (between 50% and 79% of personal best)

Quick-relief Medication(s): □ Albuterol/levalbuterol ____ puffs, every 4 hours as needed

Control Medication(s): □ Continue Green Zone medicines □ Add: __________________________ □ Change to: __________________________

You should feel better within 20-60 minutes of the quick-relief treatment. If you are getting worse or are in the Yellow Zone for more than 24 hours, THEN follow the instructions in the Red Zone and call the doctor right away.

Red Zone: Get Help Now!

Symptoms: Lots of problems breathing - Cannot work or play - Getting worse instead of better - Medicine is not helping

Peak Flow Meter: ______ (less than 50% of personal best)

Take Quick-relief Medicine NOW! □ Albuterol/levalbuterol ____ puffs, ______ (how frequently)

Call 911 immediately if the following danger signs are present:
• Trouble walking/talking due to shortness of breath
• Lips or fingernails are blue
• Skin is still red after 15 minutes

Emergency Contact: __________________________ Phone: (_____) _______ _______.

Healthcare Provider: __________________________ Phone: (_____) _______ _______.

Date: _______/_____/_______

1-800-LUNGUSA | LUNG.org

www.PILOTforPulmonary.org
ERS/ATS: Uncontrolled Asthma

At least one of the following:

1) Poor symptom control: ACQ consistently > 1.5, ACT < 20 (or “not well controlled” by NAEPP/GINA guidelines)
2) Frequent severe exacerbations: ≥ 2 bursts of systemic CS (> 3 days each) in the previous year
3) Serious exacerbations: at least one hospitalization, ICU stay or mechanical ventilation in the previous year
4) Airflow limitation: after appropriate bronchodilator withhold FEV$_1$ < 80% predicted (in the face of reduced FEV$_1$/FVC defined as less than the lower limit of normal)

Many patients with severe asthma are not well-controlled with standard therapy

Abbreviations: ACQ: Asthma Control Questionnaire; ACT: Asthma Control Test; NAEPP: National Asthma Education and Prevention Program.

Asthma Phenotypes and Endotypes

- **Phenotype:** clinical characteristics based upon genetic makeup and environmental exposures

- **Endotype:** specific phenotype with well-characterized pathophysiologic (molecular) mechanism
 - **T2 cytokines (IL-4, IL-5, IL-13):** dominant cytokines in airways of 60 – 70% of patients with asthma
 - **Cell sources of IL-5 and IL-13:** TH2 cells, type 2 innate lymphoid cells (ILC-2), mast cells
 - **T2 gene expression correlates with worsening asthma control**

Type 2 vs Non-Type 2 Asthma: Basic Distinctions

Type 2 Asthma
- More severe
- High expression of Th2-cell cytokines in the airways
- Airway and systemic eosinophilia
- Responsive to corticosteroids
- Responsive to inhibitors of type 2 inflammation

Non-Type 2 Asthma
- Less severe
- Low expression of Th2-cell cytokines in the airways
- Absence of airway and systemic eosinophilia
- Lack of responsiveness to corticosteroids
- Lack of responsiveness to inhibitors of type 2 inflammation

Severe Asthma Phenotypes and Endotypes

<table>
<thead>
<tr>
<th>Endotype</th>
<th>Phenotype</th>
<th>Clinical/Physiologic Characteristics</th>
</tr>
</thead>
</table>
| Type 2 with variable eosinophilia | Early-onset, allergic | • History of atopic dermatitis and allergic rhinitis
 | | • May have chronic rhinosinusitis | |
| Type 2 with marked eosinophilia; | Late-onset, less allergic | • Often develops after chronic rhinosinusitis/nasal polyps; may be associated with AERD |
| leukotrienes important in AERD | | • Severe airway obstruction |
| Non-Type 2 with minimal or no | Late-onset, obesity-related, | • Relatively normal bronchial responsiveness; minimal or no allergic comorbidities |
| eosinophilia | nonallergic | |
| | Late-onset, nonallergic | • Poorly characterized |
| | | • May have significant LRT infection or GERD |

Abbreviations: AERD = aspirin-exacerbated respiratory disease; LRT = lower respiratory infection; GERD = gastroesophageal reflux disease.
Inflammatory Cascade

Allergens

Goblet cell

Bacteria / Viruses / Pollutants

Airway epithelium

Allergic Eosinophilic Airway Inflammation
Inflammatory Cascade

- Allergens
- Bacteria / Viruses / Pollutants

Airway epithelium

- Dendritic cell
- Native T cell
- Th2

TSLP

Allergic Eosinophilic Airway Inflammation
Inflammatory Cascade

Allergens

Goblet cell

Bacteria / Viruses / Pollutants

Airway epithelium

Histamine
Prostaglandins
Leukotrienes

TSLP

Dendritic cell

Mast cell

Plasma cell

IgE

B Lymphocyte

B

Native T cell

T_{h}2

IL-4

IL-13

IL-5

IL-1

Eosinophils

Allergic Eosinophilic
Airway Inflammation
Goals of Asthma Management

• **Achieve disease control**
 ‒ Reduce frequency and severity of symptoms
 ‒ Reduce rescue inhaler use
 ‒ Increase physical activity
 ‒ Improve in lung function

• **Reduce future risk of**
 ‒ Exacerbations
 ‒ Airway damage
 ‒ Adverse effects of asthma medications

Monoclonal Antibody Treatments Approved or in Late Development and Their Targets

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omalizumab* (Xolair)</td>
<td>IgE</td>
</tr>
<tr>
<td>Mepolizumab* (Nucala)</td>
<td>IL-5</td>
</tr>
<tr>
<td>Reslizumab* (Cinqair)</td>
<td>IL-5</td>
</tr>
<tr>
<td>Benralizumab* (Fasenra)</td>
<td>IL-5Rα</td>
</tr>
<tr>
<td>Dupilumab* (Dupixent)</td>
<td>IL-4Rα (IL-4, IL-13)</td>
</tr>
<tr>
<td>Tezepelumab† (Currently no brand name)</td>
<td>TSLP</td>
</tr>
</tbody>
</table>

*FDA-approved for asthma.
†Phase 2 clinical trial for treatment of severe asthma is complete; a phase 3 trial is recruiting.
Biomarkers May Predict Reductions in Exacerbations

Greater prevention of exacerbations with omalizumab was seen in patients with high individual T2 biomarkers (EOS, FeNO)

†Greater prevention of exacerbations was also seen in patients with high periostin (≥50 ng/mL), though the difference compared to patients with low periostin (<50 ng/mL) was not significant (P = 0.07).

Blood Eosinophil Counts and Risk of Asthma Exacerbations

Claims database analysis examining eosinophil count and exacerbations requiring systemic CS or ER/hospital care

- 201–300 cells per μL (n=25,882)
- 301–400 cells per μL (n=15,030)
- 401–500 cells per μL (n=8,659)
- 501–600 cells per μL (n=4,928)
- 601–700 cells per μL (n=2,726)
- 701–800 cells per μL (n=1,631)
- 801–900 cells per μL (n=947)
- 901–1,000 cells per μL (n=1,019)
- >1000 cells per μL (n=1,019)

- Severe Exacerbations
- Acute Respiratory Events
- Overall Asthma Control

Meet Jeff: 65-year-old male

- Diagnosed with COPD when he was 55
- Smoker: 22 pack/year; trying to quit, currently smoking five cigarettes per day
- Dyspnea on moderate exertion and occasional cough and sputum, occasional awakenings at night
Jeff: History

• Past history:
 – Childhood asthma, troublesome until age 12
 – Myocardial infarction four years ago
 – Diabetes mellitus and hypercholesterolemia
 – ‘Walking pneumonia’ five years ago treated with antibiotics

• Exacerbations
 – Twice last year, received short courses of antibiotics and oral steroids

• mMRC Dyspnea Score = 2
Jeff: Current Medications

- Metformin 500 mg twice daily
- Atorvastatin 20 mg once daily
- ASA 81 mg once daily
- Currently taking tiotropium once daily and is on short acting beta₂-agonist, when needed
Jeff: Exam and Evaluation

• Physical findings:
 – Diminished air entry on lung auscultation, otherwise normal

• Labs
 – Hemoglobin: 11 g/dL
 – MCV: 89 fL
 – WBC: 10 x 10³/µL
 – Eosinophils: 300/µL
 – Neutrophils: 55%

• CXR: hyperinflation, otherwise normal
Jeff: Pulmonary Function Test

<table>
<thead>
<tr>
<th>-- Spirometry --</th>
<th>Pred</th>
<th>LLN</th>
<th>ULN</th>
<th>Pre Actual</th>
<th>% Pred</th>
<th>Post Actual</th>
<th>% Pred</th>
<th>% Chng</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>4.25</td>
<td>3.41</td>
<td>5.09</td>
<td>2.61</td>
<td>61</td>
<td>3.15</td>
<td>74</td>
<td>+20</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>3.29</td>
<td>2.58</td>
<td>4.00</td>
<td>1.46</td>
<td>44</td>
<td>1.70</td>
<td>51</td>
<td>+17</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>77</td>
<td>68</td>
<td>86</td>
<td>56</td>
<td>72</td>
<td>54</td>
<td>70</td>
<td>-3</td>
</tr>
</tbody>
</table>

Image:
- [Graph demonstrating spirometry data](https://www.PILOTforPulmonary.org)
2019 GOLD ABCD Assessment Tool

Spirometrically confirmed diagnosis

Assessment of airflow limitation

Assessment of symptoms/risk of exacerbations

Moderate or severe exacerbation history

<table>
<thead>
<tr>
<th>FEV₁ (% predicted)</th>
<th>GOLD 1</th>
<th>≥ 80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GOLD 2</td>
<td>50-79</td>
</tr>
<tr>
<td></td>
<td>GOLD 3</td>
<td>30-49</td>
</tr>
<tr>
<td></td>
<td>GOLD 4</td>
<td>< 30</td>
</tr>
</tbody>
</table>

Jeff → 0.54

Jeff → 51% predicted

Jeff

C

D

mMRC 0-1
CAT < 10

A

B

mMRC ≥ 2
CAT ≥ 10

Symptoms

What Is the Next Step in Management for Jeff?

- Smoking cessation counseling
- Obtain 2D-Echo
- Refer to pulmonary rehab
- Assess need for oxygen therapy
- Step up therapy
Jeff: Next Steps

- Smoking cessation counseling
- Obtain 2D-Echo
- Refer to pulmonary rehab
- Assess need for oxygen therapy
- Step up therapy
Questions

• What is your treatment recommendation for Jeff?
• Does Jeff’s blood eosinophil count affect your treatment choice?
• Do Jeff’s comorbidities (cardiac disease, diabetes, history of pneumonia) affect your recommendations?
• Describe your plans for evaluating his inhaler technique
• What will you do if he has persistent symptoms or another exacerbation over the next 2 months?
<table>
<thead>
<tr>
<th>mMRC Grade</th>
<th>Description</th>
<th>Ticked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>I only get breathless with strenuous exercise</td>
<td>☐</td>
</tr>
<tr>
<td>Grade 1</td>
<td>I get short of breath when hurrying on the level or walking up a slight hill.</td>
<td>☐</td>
</tr>
<tr>
<td>Grade 2</td>
<td>I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level.</td>
<td>☒</td>
</tr>
<tr>
<td>Grade 3</td>
<td>I stop for breath after walking about 100 meters or after a few minutes on the level.</td>
<td>☐</td>
</tr>
<tr>
<td>Grade 4</td>
<td>I am too breathless to leave the house or I am breathless when dressing or undressing.</td>
<td>☐</td>
</tr>
<tr>
<td>Symptom</td>
<td>Score 0</td>
<td>Score 1</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>I never cough</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I have no phlegm (mucus) in my chest at all</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>My chest does not feel tight at all</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>When I walk up a hill or one flight of stairs, I am not breathless</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I am not limited doing any activities at home</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I am confident leaving my home, despite my lung condition</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I sleep soundly</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I have lots of energy</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Score: 21
Pharmacological Management: Key Points

- Pharmacological therapy can reduce COPD symptoms, reduce frequency and severity of exacerbations, and improve health status and exercise tolerance

Pharmacological treatment should be individualized and guided by:
- Symptom severity
- Risk of exacerbations
- Side effects
- Comorbidities
- Drug availability and cost
- Patient’s response, preference and ability to use various devices

Inhaler technique needs to be assessed regularly!

Peak Inspiratory Flow Rate: An Important Consideration in COPD

- Low PIFR may lead to reductions in medication reaching the lungs and lung deposition
- Most DPI devices require a minimum PIFR of 30 L/min
- PIFR >60 L/min may help maximize drug delivery
 - Some COPD patients have problems achieving required PIFR through DPIs, but training is useful to help some exceed the minimum required rate with small improvements.
- Metered dose inhalers (MDIs) should be used

<table>
<thead>
<tr>
<th>PIFR</th>
<th>Drug Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (<30 L/min)</td>
<td>Tends toward mouth/throat</td>
</tr>
<tr>
<td>High (>60 L/min)</td>
<td>More effectively reaches lungs</td>
</tr>
</tbody>
</table>

Goals for Treatment of Stable COPD

REDUCE SYMPTOMS
- Relieve symptoms
- Improve exercise tolerance
- Improve health status

REDUCE RISK
- Prevent disease progression
- Prevent and treat exacerbations
- Reduce mortality

Identify and reduce risk factor exposure
- Smoking cessation
- Efficient ventilation should be recommended
- Advise patients to avoid continued exposures the potential irritants

Long-Acting Combinations for COPD

<table>
<thead>
<tr>
<th>LAMA/LABA</th>
<th>Dose and Inhalation Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once Daily</td>
<td></td>
</tr>
<tr>
<td>Umeclidinium/vilanterol</td>
<td>62.5/25 µg (DPI)</td>
</tr>
<tr>
<td>Tiotropium/olodaterol</td>
<td>5/5 µg (SMI)</td>
</tr>
<tr>
<td>Twice Daily</td>
<td></td>
</tr>
<tr>
<td>Glycopyrrolate/formoterol</td>
<td>18/9.6 µg (MDI)</td>
</tr>
<tr>
<td>Indacaterol/glycopyrrolate</td>
<td>27.5/15.6 µg (DPI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICS/LAMA/LABA</th>
<th>Dose and Inhalation Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once Daily</td>
<td></td>
</tr>
<tr>
<td>Fluticasone/umeclidinium/vilanterol</td>
<td>100 µg/62.5/25 µg (DPI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LABA/ICS</th>
<th>Dose and Inhalation Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once Daily</td>
<td></td>
</tr>
<tr>
<td>Vilanterol/fluticasone furoate</td>
<td>25 µg/100 µg (DPI) daily</td>
</tr>
<tr>
<td>Twice Daily</td>
<td></td>
</tr>
<tr>
<td>Formoterol/budesonide</td>
<td>4.5 µg/160 µg (MDI)</td>
</tr>
<tr>
<td>Formoterol/mometasone</td>
<td>5 µg/100 µg or 5 µg/200 µg (MDI)</td>
</tr>
<tr>
<td>Salmeterol/fluticasone</td>
<td>50 µg/250 µg (DPI)</td>
</tr>
</tbody>
</table>
Inhaled Therapies

• When a treatment is given by the inhaled route, the importance of education and training in inhaler device technique cannot be over-emphasized.

• The choice of inhaler device has to be individually tailored and will depend on access, cost prescriber, and most importantly, patient’s ability and preference.

• It is essential to provide instructions and to demonstrate the proper inhalation technique when prescribing a device to ensure that inhaler technique is adequate and re-check at each visit that patients continue to use their inhaler correctly.

• Inhaler technique (and adherence to therapy) should be assessed before concluding that the current therapy is insufficient.
COPD Management Cycle

ADJUST
- Escalate
- Switch inhaler device or molecules
- De-escalate

ASSESS
- Inhaler technique and adherence
- Non-pharmacological approaches (including pulmonary rehabilitation and self-management education)

REVIEW
Symptoms
- Dyspnea
- Exacerbations

If Response to Treatment Is Not Adequate

Dyspnea

- LABA or LAMA
 - Consider switching inhaler device or molecules
 - Investigate (and treat) other causes of dyspnea

- LABA + LAMA
 - ** Consider if eos ≥ 300 or eos ≥ 100 AND ≥ 2 moderate exacerbations / 1 hospitalization
 - ** Consider de-escalation of ICS or switch if pneumonia, inappropriate original indication or lack of response to ICS

- LABA + ICS
 - LABA + LAMA
 - LABA + LAMA + ICS

- LABA + LAMA + ICS
 - Roflumilast
 - FEV₁ < 50% & chronic bronchitis
 - Azithromycin
 - Consider if eos < 100

Exacerbations

- LABA or LAMA
 - LABA + LAMA
 - LABA + LAMA + ICS

- LABA + LAMA + ICS
 - Roflumilast
 - FEV₁ < 50% & chronic bronchitis
 - Azithromycin

- Azithromycin
 - Consider if eos < 100

Eos = blood eosinophil count (cells/μl)
- Consider if eos ≥ 300 or eos ≥ 100 AND ≥ 2 moderate exacerbations / 1 hospitalization
- ** Consider de-escalation of ICS or switch if pneumonia, inappropriate original indication or lack of response to ICS

Non-Pharmacological Management: Key Points

• Patient education and self-management
• Influenza and pneumococcal vaccines decrease the incidence of lower respiratory tract infections
• Pulmonary rehabilitation improves symptoms, quality of life and physical/emotional participation in everyday activities
• In patients with severe resting chronic hypoxemia, long-term oxygen therapy improves survival
• Palliative approaches are effective in controlling symptoms in advanced COPD